惯导传感器:惯性传感器

2021/11/11 13:25 · 传感器知识资讯 ·  · 惯导传感器:惯性传感器已关闭评论
摘要:

惯导传感器:惯性传感器收藏查看我的收藏0有用+1已投票0惯性传感器语音编辑锁定讨论上传视频上传视频本词条由“科普中国”科学百科词条编写与应用工作项目审核。惯性传感器是一种传感器,主要是检测和测量加速度、倾斜、冲击、振动、旋转和多自由度(DoF)运动,是解决导航、定向和运动载体控制的重要部件。中文名

惯导传感器:惯性传感器  第1张

惯导传感器:惯性传感器

收藏
查看我的收藏
0
有用+1
已投票
0
惯性传感器
语音
编辑
锁定
讨论
上传视频
上传视频
本词条由“科普中国”科学百科词条编写与应用工作项目
审核

惯性传感器是一种传感器,主要是检测和测量加速度、倾斜、冲击、振动、旋转和多自由度(DoF)运动,是解决导航、定向和运动载体控制的重要部件。
中文名
惯性传感器
外文名
inertial sensor
用 处
检测和测量加速度、倾斜
本 质
传感器
构 成
加速度计,角速度传感器
目录
1
构成
2
分类
3
作用原理
4
应用
5
技术导航
6
相关介绍
惯性传感器构成
编辑
语音
惯性传感器包括加速度计(或加速度传感计)和角速度传感器(陀螺)以及它们的单、双、三轴组合IMU(惯性测量单元),AHRS(包括磁传感器的姿态参考系统)。MEMS加速度计是利用传感质量的惯性力测量的传感器,通常由标准质量块(传感元件)和检测电路组成。IMU主要由三个MEMS加速度传感器及三个陀螺和解算电路组成。
[1]
惯性传感器分类
编辑
语音
惯性传感器分为两大类:一类是角速率陀螺;另一类是线加速度计。角速率陀螺又分为:机械式干式﹑液浮﹑半液浮﹑气浮角速率陀螺;挠性角速率陀螺;MEMS硅﹑石英角速率陀螺(含半球谐振角速率陀螺等);光纤角速率陀螺;激光角速率陀螺等。线加速度计又分为:机械式线加速度计;挠性线加速度计;MEMS硅﹑石英线加速度计(含压阻﹑压电线加速度计);石英挠性线加速度计等。
惯性传感器作用原理
编辑
语音
(1).科里奥利(Coriolis)原理:也称科氏效应(科氏力正比于输入角速率)。该原理适用于机械式干式﹑液浮﹑半液浮﹑气浮角速率陀螺;挠性角速率陀螺;MEMS硅﹑石英角速率陀螺(含半球谐振角速率陀螺)等。Coriolis法国物理学家(1792年~1843年)。(2).萨格纳(Sagnac)原理:也称萨氏效应(相位差正比于输入角速率)。该原理适用于光纤角速率陀螺;激光角速率陀螺等。Sagnac法国物理学家(1869年~1926年),居里夫妇的朋友。1913年发明萨氏效应。
惯性传感器应用
编辑
语音
低精度MEMS惯性传感器作为消费电子类产品主要用在手机、GPS导航、游戏机、数码相机、音乐播放器、无线鼠标、PD、硬盘保护器、智能玩具、计步器、防盗系统。由于具有加速度测量、倾斜测量、振动测量甚至转动测量等基本测量功能,有待挖掘的消费电子应用会不断出现。中级MEMS惯性传感器作为工业级及汽车级产品,则主要用于汽车电子稳定系统(ESP或ESC)GPS辅助导航系统,汽车安全气囊、车辆姿态测量、精密农业、工业自动化、大型医疗设备、机器人、仪器仪表、工程机械等。高精度的MEMS惯性传感器作为军用级和宇航级产品,主要要求高精度、全温区、抗冲击等指数。主要用于通讯卫星无线、导弹导引头、光学瞄准系统等稳定性应用;飞机/导弹飞行控制、姿态控制、偏航阻尼等控制应用、以及中程导弹制导、惯性GP战场机器人等。
[2]
惯性传感器技术导航
编辑
语音
固态惯性传感器有着潜在的成本、尺寸、重量等优势,其在系统中的应用也必然激增。随着器件成本的降低、小尺寸传感器的出现,军事应用也出现了许多新的应用领域。惯性导航系统是随着惯性传感器的发展而发展起来的一门导航技术,它完全自主、不受干扰、输出信息量大、输出信息实时性强等优点使其在军用航行载体和民用相关领域获得了广泛应用。惯导系统的精度、成本主要取决于陀螺仪和加速度传感器的精度和成本,尤其是陀螺仪其漂移对惯导系统位置误差增长的影响是时间的三次方函数,而高精度的陀螺仪制造困难,成本很高,因此惯性技术界一直在寻求各种有效方法来提高陀螺仪的精度,同时降低系统成本。微型机械式惯导传感器将统治战术性能要求(或以下)的应用领域。军用市场将推动这些传感器的发展,如适用灵巧飞行器、自主导航导弹、短程战术导弹导航、火力控制系统、雷达天线的运动补偿、复合智能小型推进器和晶片大小的INS/GPS系统。洲际弹道导弹系统和潜射弹道导弹系统战略制导系统的发展,将依赖于武器系统和战略系统的总体性能要求。导航系统为提高导航精度,将继续采用稳定平台式机械陀螺仪和加速度计(摆式陀螺加速度计)。从20世纪50年代的液浮陀螺仪到70年代的动力调谐陀螺仪;从80年代的环形激光陀螺仪、光纤陀螺仪到90年代的振动陀螺仪以及研究报道较多的微机械电子系统陀螺仪相继出现,从而推动了惯性传感器不断向前发展。因此对惯性传感器的研究一直是各国惯性技术领域的重点,各种新材料、新技术在惯性传感器研究中都有所体现,随着低成本、高精度的惯性传感器的出现,惯性导航系统将成为通用、低价的导航系统。
[3]
惯性传感器相关介绍
编辑
语音
最近的传感器技术发展使得机器人和其他工业系统设计实现了革命性的进步。除了机器人以外,惯性传感器有可能改善其系统性能或功能的应用还包括:平台稳定、工业机械运动控制、安全/监控设备和工业车辆导航等。这种传感器提供的运动信息非常有用,不仅能改善性能,而且能提高可靠性、安全性并降低成本。然而,要想获得这些好处,必须克服一些障碍,尤其是许多工业应用处在恶劣的物理环境下,必须考虑温度、震动、空间限制和其他因素的影响。对工程师而言,为了从传感器获取一致的数据,将其转换成有用的信息,然后在系统的时序和功耗预算内做出反应,工程师必须拥有多种技术领域的知识和经验,并且遵循良好的设计规范。了解问题来自惯性传感器的信息经过处理和积分后,可以提供许多不同类型的运动、位置和方向输出。每种类型的运动都涉及到一系列应用相关的复杂因素,对此必须加以了解。工业控制应用就是一个很好的例子,某种形式的指向或转向设备对这些应用十分有用。倾斜或角度检测常常是此类应用的核心任务,在最简单的范例中,机械气泡传感器便可满足需要。然而,在明确传感器需求之前,需要分析最终系统的完整运动动力学特性、环境、寿命周期和可靠性预期。如果系统的运动相对而言为静态,简单的角度传感器可能就足够了,但实际的技术决策取决于响应时间、冲击和震动、尺寸、整个使用寿命期间的性能漂移。此外,许多系统涉及到多种类型的运动(如旋转和加速度等),而且往往在多个轴上工作,这就需要考虑将多种类型的传感器结合在一起。一旦知道正确的传感器类型和技术后,挑战便转移到了解和最终补偿传感器对环境(温度、震动、冲击、安装位置、时间和其他变量)的反应。环境补偿涉及到额外的电路、测试、校准和动态调整,而每种类型的传感器,甚至每个传感器都是独特的,因此这又会带来补偿不足或过度的额外风险,除非工程师非常了解传感器特性。最后这一点驱使许多设计工程师采用完全集成的传感器解决方案,以便消除运用和实施过程中的障碍。线性速率抑或角速率惯性传感器有多种类型。MEMS(微机电系统)传感器是最完善的传感器类型之一,已经使众多应用受益。15年前,MEMS线性加速度传感器(加速度计)彻底革新了汽车安全气囊系统。自此以后,从笔记本电脑硬盘保护到游戏控制器中更为直观的用户运动捕捉,各种独特的功能和应用得以实现。根据谐振器陀螺仪的原理,MEMS结构也可提供角速率检测。两个多晶硅检测结构各含一个“扰动框架”,通过静电将扰动框架驱动到谐振状态,以产生必要的运动,从而在旋转期间产生科氏力。在各框架的两个外部极限处(与扰动运动正交)是可动指,放在固定指之间,形成一个容性捡拾结构来检测科氏运动。当MEMS陀螺仪旋转时,可动指的位置变化通过电容变化进行检测,由此得到的信号送入一系列增益和解调级,产生电速率信号输出。某些情况下,该信号还会经转换,送入一个专有数字校准电路。传感器内核周围的集成度和校准由最终性能要求决定,但在许多情况下,可能需要进行运动校准,以便实现最高的性能水平和稳定性。
[4]
调理和处理在工业市场上,诸如震动分析、平台校正、一般运动控制之类的应用都需要高集成度和高可靠度的解决方案,而且在许多情况下检测元件是直接嵌入到现有设备中。此外,还必须提供足够的控制、校准和编程功能,使器件真正独立自足。一些应用范例包括:● 机器自动化:通过提高位置检测精度,并且更加严格地将此信息与远程控制或编程设置的运动相关联,可以使自治或远程控制的精密仪器和机械臂更加精确、有效。● 工业机械的状态监控:通过将传感器更深地嵌入机械内部,并且借由传感器性能和嵌入式处理而更早、更准确地掌握状态变化的迹象,可以获得更实用的价值。● 移动通信和监控:无论是陆地、航空还是海上交通工具,惯性传感器都有助于其实现稳定(天线和相机)和定向导航(利用GPS和其他传感器进行航位推算)。工业检测市场异常纷繁多样,必须通过集成嵌入式可调特性,如数字滤波、采样速率控制、状态监控、电源管理选项和专用辅助I/O功能等,来支持各种不同的性能、集成度和接口要求。在其他更复杂的情况下,还需要采用多个传感器和多种类型的传感器。即使看起来很简单的惯性运动,例如仅限于一个或两个轴的运动,也可能需要同时采用加速度计和陀螺仪检测来补偿重力、震动及其他不符常规的行为和影响。传感器还可能具有交叉灵敏度,很多时候需要对此进行补偿,即使无须补偿,至少也需要加以了解。此外,惯性传感器的性能指标存在许多不同的标准,这使得上述问题的解决更加困难。当指定角速率传感器要求时,多数工业系统设计工程师主要关心的是陀螺仪稳定性(随时间发生的偏置估算),消费级陀螺仪通常不会规定这一特性。如果传感器的线性加速度性能较差,那么即使0.003°/s的良好陀螺仪偏置稳定性也可能毫无意义。例如,假设线性加速度特性为0.1°/s/G,在旋转±90° (1 G)的简单情况下,这将给0.003°/s的偏置稳定性增加0.1°的误差。加速度计通常与陀螺仪一起使用,以便检测重力影响,并且提供必要的信息来驱动补偿过程。为了优化传感器性能并尽可能缩短开发时间,需要深入了解传感器灵敏度和应用环境。校准计划可以针对影响最大的因素进行定制,从而减少测试时间和补偿算法开销。面向具体应用的解决方案将适当的传感器与必要的信号处理结合在一起,如果具备高性价比并且提供现成可用的标准系统接口,这些解决方案将能消除许多工业客户过去所面临的实施和生产障碍。加速度、震动分析在一些应用案例中,相对简单的传感器输出可能就足够了,但在另一些应用中(例如,通过震动分析进行状态监控),则需要增加相当多的处理过程才能实现所需的输出。围绕惯性传感器而构建的一个高集成度器件示例是ADIS,它是一款完全自治的频域震动监控器。此类器件可能不提供相对简单的g/mV输出,而是提供特定应用分析。在本例中,其嵌入式频域处理、512点实值FFT和片上存储器能够识别各震动源并进行归类,监控其随时间的变化情况,并根据可编程的阈值做出反应。能够检测和了解运动可能对几乎所有设想到的领域都具有应用价值。大多数情况下,人们希望掌控一个系统发生的运动,并利用该信息提高性能(响应时间、精度、工作速度等),增强安全性或可靠性(系统在危险情况下关机),或者获得其他增值特性。但在某些情况下,不运动才是至关重要的,因此传感器可用来检测不需要的运动。这些特性或性能升级往往在现有系统上实施,考虑到最终系统的功耗和尺寸已确定,或者必须最小化,MEMS惯性传感器的小尺寸和低功耗特性无疑极具吸引力。某些情况下,这些系统的设计人员不是运动动力学方面的专家,因此,在决定是否进行系统升级时,完全集成和校准的传感器存在与否可能是最关键的因素。
词条图册
更多图册
解读词条背后的知识
科技夕延说聊
寻觅科技,让生活更美好!
惯性传感器(IMU)
近两年来,车联网、自动驾驶、无人驾驶、汽车智能化等成为汽车行业的热门话题,未来汽车将向安全、可靠和舒适的方向方向发展。这背后的发展离不开传感器的功能,我们将讨论使用越来越广泛的惯性传感器。一、惯性传感器简介(IMU)惯性测量单元IMUInertialMeasurementU...
2020-10-260
科技厂长
希望大家能够多多支持
惯性传感器安全性遭质疑,但是IMU未来身负重担
什么是惯性传感器?加速度传感器不仅可以向用户窃听此类声音,而且属于惯性传感器的陀螺仪也可以使用相同的方式进行隐私攻击,因此什么是惯性传感器及其工作原理?惯性传感器包括加速度计(也称为加速度传感器)和角速度传感器(也称为陀螺仪),以及它们的单轴,双轴和三轴组合惯性测量单元(也...
2020-04-170
参考资料
1.

佚名. 惯性传感器[J]. 今日电子, 2008(10):122-123.
2.

徐景硕. 惯性传感器技术及发展[J]. 传感器与微系统, 2001, 20(5):1-4.
3.

秦勇, 臧希喆, 王晓宇,等. 基于MEMS惯性传感器的机器人姿态检测系统的研究[J]. 传感技术学报, 2007, 20(2):298-301.
4.

李仁, 曾庆双, 陈希军. 一种低成本MEMS惯性传感器应用技术研究[J]. 传感技术学报, 2009, 22(11):1670-1674.
惯导传感器:惯性传感器  第2张

惯导传感器:惯性导航的原理是什么?

楼上的回答是对的。如果要细化,需要了解惯性空间、坐标系转换、常用坐标系定义、数值分析等物理概念和数值算法的知识。
不带任何偏见的对比,计算机专业应届硕士毕业就可以在实际产品开发时独挡一面,惯性导航专业博士毕业在产品开发中才算入门,打杂两年再说。为什么这么说?因为我是搞惯导的,这么说才能抬高自己。
导航解决的其实就是从哪儿来到哪儿去的问题。对此我们总是能想到指南针。
但是有一个经典的笑话,说一个人带着指南针迷路了:“我知道北在哪儿,可是我在哪儿啊?”
所以要完成导航,需要知道我在哪儿,还有北在哪儿,如果有目的地的话,还得知道目的地在哪儿,从而告诉用户,通往目的地的道路。其中,【我在哪儿】是非常重要的。
地上铺了方砖,你知道自己一开始在哪块砖上,然后向左三步,往前五步,向左转,再往后退四步,向后转,再往左走两步,等等,每一步都是一块砖的长度。
把这些告诉一个没在房间里的人,他在纸上画画,不看你也知道你现在应该在哪块砖上,朝向哪里。
惯性导航和一些其它导航方法的基本原理差不多就是这样。
你知道自己的初始位置,知道自己的初始朝向(姿态),知道自己每一时刻如何改变了朝向,知道自己每一时刻相对朝向是怎样走的,把这些加一起不停地推,走一步推一步,在不考虑各种误差时,得出的结果就应该正好是你现在的朝向和位置。
但是要怎么知道自己的方向和位置是怎么改变的呢?不同的导航系统用不同的传感器,有不同的方法,比如里程计用车辆上轮子转的周数,多普勒计程仪像蝙蝠一样往水底发射声波……而惯性导航之所以叫【惯性】导航,就是因为使用的是【惯性器件】,也就是加速度计和陀螺仪。
加速度计测量加速度,利用的原理是 a=F/M,测量物体的“惯性力”。
陀螺仪测量角速度,这是一个我个人觉得非常有意思的器件,我第一次意识到其原理的时候觉得好神奇。
如果把一个陀螺立在桌上,轻轻一推它的轴的上部,它会倒下;但如果把陀螺转起来以后再立在桌上,再这样推一下,它就会摇摇晃晃地竖着向前走去,好像有什么力量阻止陀螺倒下去一样。
同样的原理也能解释为什么自行车一旦骑起来就不像慢速前进或者原地站着那样容易倒下。
关于陀螺仪的原理,可以看神十太空授课的视频:
神十 太空授课:陀螺晃动向前走 视频
这样我们就有了基础的陀螺仪和加速度计,也知道了初始位置,我们可以放心的拿过来它们的数据然后积分再积分推位获取位置了吧?
但是等下,惯性器件为什么叫惯性器件呢,就是因为它输出的是相对惯性空间的数据,在地球上,可以大概认为它输出的是相对宇宙的数据。
这是个什么概念呢?——别忘了,地球是圆的,而且还是在自转的!
我们导航的时候,需要的是相对东向、北向、天向的数据。
这很好理解,如果不这样做而是直接使用相对宇宙的数据,看导航输出,你站在这里不动,十二小时以后导航仪告诉你,你现在大头朝“下”(其实依照你站的纬度不同,还不一定是大头朝下),会让使用者感觉混乱。
而位移上,相对宇宙的位移数据会忠实体现出地球的自转,那真是坐地日行八万里。而你想知道的只是你往东走了多少又往北走了多少目前北在哪里下在哪里接下来该怎么走而已。
所以我们需要把惯性系的数据转化成导航系(一般是地理系也就是东北天)数据,也就是要减去地球自转,和你在地球上经纬度变化所带来的角度变化。这个过程,在平台式惯导中是由一个始终跟踪所在位置东北天的物理平台实现的,在捷联式惯导中是由一系列公式和推算实现的。
不管是物理平台还是数学平台,当你拥有了这个平台之后,就可以先确定初始位置速度和姿态,然后将惯性器件输出积分再积分一步步加上去,获取载体的位置速度和姿态信息了。当然如果实际这样做,会面对很多新问题,需要一一加以解决。
以上是我对惯性导航原理的大概总结,我自己也在学习中,答案中很可能有错误或不足之处,欢迎各位同学或者老师指出来。
如果要我推荐一本不需要专业课程知识就能较为全面的了解惯性技术的原理和应用,我会推荐《海陆空天显神威———惯性技术纵横谈》这本书,丁衡高院士写的,暨南大学和清华大学出版社出版。
使用以惯性系作为参考的传感器,计算得到导航结果,所以叫惯性导航。
同一个运动的物体,在不同的惯性参考系中,位移、速度可能是不同的。但是在不同的参考系中,同一个物体的速度增量、角度增量是相同的,进而加速度、角速度是相同的。(注意,这里说的是参考系、不是坐标系,速度增量、角度增量、加速度、角速度它们的坐标不一定相同,但是实质的方向和大小是相同的)
我们把测量载体相对于惯性系的加速度、角度增量、角速度的的传感器称为惯性传感器。利用这些传感器的导航就是惯性导航。
加速度积分是速度变化量,可以求出速度。速度积分是位移,可以求出位置。方向也是类似的求法。这是一种积分的运算。举个例子,这有点像是我们闭着眼睛走路:如果我们向前走10步、右拐90°、再向前走10步、右拐90°、再向前走10步,那么我们的位置大约是初始位置的右侧10步。(闭眼走路不算是狭义的惯性导航,但是可以算是广义的基于积分的导航,和惯性导航有相通之处)
我们常用的导航系往往不是惯性系,所以惯性导航有很多非常麻烦的修修补补的问题。比如,以地面作为参照来导航,就应该把地球自转引起的陀螺仪数值补偿掉。此外,地球是圆的,如果物体高速移动,即使物体姿态相对于惯性系不变,物体相对于地面的姿态也会因为位置变化而变化,这也是应该补偿的。
此外,实际上,加速度传感器不能区分加速度和万有引力。(这个结论叫等效原理,和广义相对论有一些关系)做惯性导航计算的时候还要把万有引力的干扰补偿掉。
惯性导航的主要优势有几点:1.惯性传感器不依赖于外界的信号,比如无线电、可见光、路标等等,抗干扰。2.惯性传感器采样率比较高(工作速度比较快),对于机动性比较好的物体其它导航方式速率不一定够用。
惯性导航的缺点,主要在于误差非常容易扩大。这就像一个不准的手表,一天不对表或许也能勉强,但是10年不对表这个表就没法提供正确时间了。惯性导航比不准的手表问题更严重,误差非常容易扩大。所以,我们希望尽量可以把其它导航方式与惯性导航结合使用,兼有抗干扰、速率高、误差有限的优点。
总之,惯性导航基本原理很简单(积分计算),但是实际应用很麻烦(五花八门的补偿)。
惯性导航,是一种无源导航,不需要向外部辐射或接收信号源,就能自主进行确定自己在什么地方的一种导航方法。
惯性导航主要由惯性器件计算实现,惯性器件包括陀螺仪和加速度计。一般来说,惯性器件与导航物体固连,加速度计测量物体运动的加速度,已知初始状态(速度和位置),加速度不断积分就可以计算出每个时刻速度和位置,就是这么简单的道理计算出速度位置进行导航。但是问题来了,陀螺仪是干嘛用的?这要从上述积分过程来讲,加速度直接积分是不对的,直接积分只能准确体现物理的线运动过程,对于角运动,并不可行。试想一下,一个物理在做向心运动,基本是在原地不动,直接积分向心加速度肯定不对,再写啊,地球是椭圆的,而且地球绕着太阳转,我们常说的导航都是对地球导航的,而惯性器件测量的是惯性空间的,一般来说,相对于太阳恒星的。所以,在物体整个过程中,势必存在转动情况,这个转动过程就是陀螺仪来跟踪的。有了陀螺仪和加速度计,物体的平动和转动都有了测量量,剩下的就是对应积分运算,这样就可以计算出准确的速度位置量了,当然物体的姿态也是中间重要的计算量。

惯导传感器:浅谈惯性导航技术与惯性导航传感器的发展与应用

  惯性导航作为高新尖端技术,世界上只有为数不多的国家有能力研制惯性技术产品。由于惯性导航系统具有自主性、隐蔽性、抗干扰、导航信息连续性等独特优点,是众多武器系统必备导航设备,在国防科技中占有重要地位,是衡量一个国家科学技术和军事实力的重要标志之一。
在驶入深山隧道时,汽车上安装的惯性导航辅助系统定位导航作用会非常显著。资料图
  惯性导航系统是指由陀螺仪、加速度传感器等惯性传感器及导航解算软件进行系统集成的系统级产品,陀螺仪及加速度传感器为核心器件,对系统精度起决定性作用。
  惯性导航产品主要包括惯导系统、姿态参考系统、惯性测量单元等。其中,惯导系统(INS)可提供载体的加速度、角速度等三维运动参数,并且根据上述参数得出载体的位置、姿态等重要信息。姿态参考系统(AHRS)利用加速度传感器、陀螺仪以及电子罗盘对载体运动参数和方位进行测量,通过对测量值加以处理和计算,实现对载体的位置和运动状态进行实时跟踪监控。惯性测量单元(IMU)是利用加速度传感器和陀螺仪对载体加速度和角速度进行测量,以得到载体在惯性参考系下的运动和状态的装置。
图为IMU测量模块,图中红色标记为美国PNI公司的SENtral芯片。该模块可用于室内盲区导航技术中。资料图
  惯性导航最初为军用需求而设计,主要为航空、航天、地面及海上军事用户提供导航及控制服务,是现代国防系统的核心和关键技术产品,被广泛应用于军用飞机、导弹、舰艇、核潜艇及坦克等国防领域。2015年,我国用于研发以及国防装备的惯性产品市场容量将达到293亿元。
  MEMS惯性传感器器件是继传统机械式惯性器件、光学惯性器件之后的第三代惯性器件,是实现高精度、高可靠性、低成本、小型化、高负载、应用领域更加广泛的导航系统的关键部件,代表着惯性器件的重要发展方向。除了传统惯导领域,未来更可应用到制导炮弹、智能弹药引信等新市场,空间新增近百亿。
  一直以来,欧美国家在惯性导航产品方面经费投入较大,研究起步较早,技术及产品优势明显,但对华技术封锁及禁止出口。相对而言,我国惯性导航产品在技术水平和产品性能方面与发达国家还存在不少差距。近些年,我国在国防领域从事惯性技术产品研发及生产的企业已经由航天、兵器等几家军工研究所主导市场竞争格局,转为部分民营公司依靠自身技术优势和相对灵活的经营机制谋取市场发展机会,并逐渐奠定在国内惯性导航产业中的相对领先地位。
惯导传感器:惯性传感器  第3张

惯导传感器:飞行汽车不再是科幻电影

近两年来,车联网、自动驾驶、无人驾驶、汽车智能化、网联化等成为了汽车行业的热点话题,未来汽车一定是朝着安全、可靠及舒适的方向发展。而这一切背后的发展都离不开传感器的作用,今天我们就来聊聊用途越来越广的惯性传感器——IMU。
一、惯性传感器(IMU)简介
IMU全称Inertial Measurement Unit,惯性测量单元,主要用来检测和测量加速度与旋转运动的传感器。其原理是采用惯性定律实现的,这些传感器从超小型的的MEMS传感器,到测量精度非常高的激光陀螺,无论尺寸只有几个毫米的MEMS传感器,到直径几近半米的光纤器件采用的都是这一原理。
最基础的惯性传感器包括加速度计和角速度计(陀螺仪),他们是惯性系统的核心部件,是影响惯性系统性能的主要因素。尤其是陀螺仪其漂移对惯导系统的位置误差增长的影响是时间的三次方函数。而高精度的陀螺仪制造困难,成本高昂。因此提高陀螺仪的精度、同时降低其成本也是当前追求的目标。
陀螺仪的发展趋势:
随着微电子技术的发展,出现了新型的惯性传感器微机械陀螺仪和加速度计。MEMS(Micro-Electro-Mechanical System,微机电系统/微电子机械系统)技术传感器也逐渐演变成为汽车传感器的主要部件。本文这里重点介绍MEMS的六轴惯性传感器。它主要由三个轴加速度传感器及三个轴的陀螺仪组成。
二、MEMS惯性传感器分级、组成及原理
1、MEMS惯性传感器分级
目前不管是传统汽车还是自动驾驶汽车用的惯性传感器通常是中低级的,其特点是更新频率高(通常为:1kHz),可提供实时位置信息。但它有个致命的缺点——他的误差会随着时间的推进而增加,所以只能在很短的时间内依赖惯性传感器进行定位。通常在自动驾驶车辆中与GNSS(全球导航卫星系统)配合一起使用,称为组合惯导。
2、MEMS惯性传感器组成及原理
惯性传感器是对物理运动做出反应的器件,如线性位移或角度旋转,并将这种反应转换成电信号,通过电子电路进行放大和处理。加速度计和陀螺仪是最常见的两大类MEMS惯性传感器。加速度计是敏感轴向加速度并转换成可用输出信号的传感器;陀螺仪是能够敏感运动体相对于惯性空间的运动角速度的传感器。三个MEMS加速度计和三个MEMS陀螺仪组合形成可以敏感载体3个方向的线加速度和3个方向的加速度的微型惯性测量组合(Micro Inertial Messurement Unit,MIMU),惯性微系统利用三维异构集成技术,将MEMS加速度计、陀螺仪、压力传感器、磁传感器和信号处理电路等功能零件集成在硅芯片内,并内置算法,实现芯片级制导、导航、定位等功能。
(1)MEMS加速度计
MEMS加速度计是MEMS领域最早开始研究的传感器之一。经过多年的发展,MEMS加速度计的设计和加工技术已经日趋成熟。
上图为MEMS加速度计,它的工作原理就是靠MEMS中可移动部分的惯性。由于中间电容板的质量很大,而且它是一种悬臂构造,当速度变化或者加速度达到足够大时,它所受到的惯性力超过固定或者支撑它的力,这时候它会移动,它跟上下电容板之间的距离就会变化,上下电容就会因此变化。电容的变化跟加速度成正比。根据不同测量范围,中间电容板悬臂构造的强度或者弹性系数可以设计得不同。还有如果要测量不同方向的加速度,这个MEMS的结构会有很大的不同。电容的变化会被另外一块专用芯片转化成电压信号,有时还会把这个电压信号放大。电压信号在数字化后经过一个数字信号处理过程,在零点和灵敏度校正后输出。
加速度计还有一个自测试功能。当它刚通电时,逻辑控制会向自测试电路发出命令。自测试电路产生一个直流电压加载到MEMS芯片的自测试电路板上,中间可活动电容板就会因静电吸引而下移。接下来的处理过程跟测试真的加速度一样。
目前,国外众多研究机构和惯性器件厂商都开展了MEMS加速度计技术研究,如美国的Draper实验室、Michigan大学、加州大学Berkley分校、瑞士Neuchatel大学、美国Northrop Grumman Litton公司、Honeywell公司、ADI、Silicon Designs、Silicon Sensing、Endevco公司、瑞士的Colibrys公司、英国的BAE公司等。
其中,以Draper实验室为代表的研究机构和大学的主要工作在于提升MEMS加速度计的技术指标。能够提供实用化MEMS加速度计产品的主要厂家有ADI、Silicon Designs、Silicon Sensing、Endevco和瑞士的Colibrys公司。
(2)MEMS陀螺仪角速度计
自20世纪80年代以来,对角速率敏感的MEMS陀螺仪角速度计受到越来越多的关注。根据性能指标,MEMS陀螺仪同样可以分为三级:速率级、战术级和惯性级。速率级陀螺仪可用于消费类电子产品、手机、数码相机、游戏机和无线鼠标;战术级陀螺仪适用于工业控制、智能汽车、火车、汽船等领域;惯性级陀螺仪可用于卫星、航空航天的导航、制导和控制。
上图为MEMS陀螺仪角速度计(MEMS gyroscope),其工作原理是利用角动量守恒原理及科里奥效应测量运动物体的角速率。它主要是一个不停转动的物体,它的转轴指向不随承载它的支架的旋转而变化。
与加速度计工作原理相似,陀螺仪的上层活动金属与下层金属形成电容。当陀螺仪转动时,他与下面电容板之间的距离机会发生变化,上下电容也就会因此而改变。电容的变化跟角速度成正比,由此我们可以测量当前的角速度。
据不完全统计,研究MEMS陀螺仪的机构如下:斯坦福大学、密歇根大学、加州大学伯克利分校、欧文、洛杉矶、中东技术大学、弗莱堡大学、南安普敦大学、首尔国立大学、根特大学、清华大学、北京大学、东南大学、上海交通大学、浙江大学、博世、ST、InvenSense、NXP、ADI、TI等。
(3)惯性传感器的误差问题
由于制作工艺的原因,惯性传感器测量的数据通常都会有一定误差。第一种误差是偏移误差,也就是陀螺仪和加速度计即使在没有旋转或加速的情况下也会有非零的数据输出。要想得到位移数据,我们需要对加速度计的输出进行两次积分。在两次积分后,即使很小的偏移误差会被放大,随着时间推进,位移误差会不断积累,最终导致我们没法再跟踪物体的位置。第二种误差是比例误差,所测量的输出和被检测输入的变化之间的比率。与偏移误差相似,在两次积分后,随着时间推进,其造成的位移误差也会不断积累。第三种误差是背景白噪声,如果不给予纠正,也会导致我们没法再跟踪物体的位置。
三、惯性传感器应用
惯性传感器能够为车辆中的所有控制单元提供车辆的即时运动状态。路线偏移,纵向横向的摆动角速度,以及纵向、横向和垂直加速度等信号被准确采集,并通过标准接口传输至数据总线。所获得的信号用于复杂的调节算法,以增强乘用车和商用车(例如,ESC/ESP、ADAS、AD)以及摩托车(优化的曲线 ABS)、工业车辆和农用车的舒适性与安全应用,如下图示。
在无人车方面的应用多与GPS或者GNSS组合使用,如下图示:
四、MEMS惯性传感器的发展
未来MEMS惯性传感器的发展主要有四个方向:
1、高精度
导航、自动驾驶和个人穿戴设备等对惯性传感器的精度需求逐渐提高,精细化测量需求和智能化的发展也对传感器的精度提出了越来越高的要求。
2、微型化
器件的微型化可以实现设备便携性,满足分布式应用要求。微型化是未来智能传感设备的发展趋势,是实现万物互联的基础。
3、高集成度
无论是惯性测量单元还是惯性微系统都是为了提高器件的集成度,进而实现在更小的体积内具备更多的测量功能,满足装备小体积、低功耗、多功能的需求。
4、适应性强
随着MEMS惯性传感器的应用范围越来越广泛,工作环境也会越来越复杂,例如:高温、高压、大惯量和高冲击等,适应复杂环境能够进一步拓宽MEMS惯性传感器的应用范围。
举报/反馈

您可能感兴趣的文章

本文地址:https://www.ceomba.cn/3972.html
文章标签: ,   ,  
版权声明:本文为原创文章,版权归 ceomba 所有,欢迎分享本文,转载请保留出处!

文件下载

老薛主机终身7折优惠码boke112

上一篇:
下一篇:

评论已关闭!