测量振动的传感器:[振动基础篇]5.振动传感器为什么能够测量振动?

2021/11/08 04:25 · 传感器知识资讯 ·  · 测量振动的传感器:[振动基础篇]5.振动传感器为什么能够测量振动?已关闭评论
摘要:

测量振动的传感器:[振动基础篇]5.振动传感器为什么能够测量振动?在振动基础篇系列文章里,我们讨论了如何利用振动理论进行激励响应的求解分析。研究对象准确的质量、刚度、阻尼等参数和边界约束条件是正确求解的基础,因此有必要通过工程振动测试实验对这些因素的准确程度进行

测量振动的传感器:[振动基础篇]5.振动传感器为什么能够测量振动?  第1张

测量振动的传感器:[振动基础篇]5.振动传感器为什么能够测量振动?

在振动基础篇系列文章里,我们讨论了如何利用振动理论进行激励响应的求解分析。研究对象准确的质量、刚度、阻尼等参数和边界约束条件是正确求解的基础,因此有必要通过工程振动测试实验对这些因素的准确程度进行分析验证。
通过研究对象物理特性(模型、质量、刚度、阻尼等参数和边界约束)进行模态特性(模态模型、模态质量、模态刚度、模态阻尼等)和响应特性分析(响应模型、位移、速度、加速度等)是振动理论的正向研究过程;而振动测试技术是振动理论的逆向思维,通过响应特性反推物理特性和模态特性。为将研究对象的振动位移、振动速度、振动加速度这些响应信号从振动系统中检测出来,需要将这些振动信号转变为可处理的机械、光学和电信号。由于电信号易于传输、调理、分析和显示,因此市面上振动传感器的输出一般均为电信号的形式。
工程振动测量系统是一般包含被测设备、传感器、数据采集及调理装置、数据分析处理装置四部分。工程典型振动测量系统原理框图如下所示:
现在已经对工程振动测试系统有了初步印象,下面进入本次讨论的一个很有意思主题:振动传感器为什么能够测量振动?
1. 问题的引入
你可能会反问振动传感器为什么不能测量振动?就像电压传感器可以测量电压,电流传感器可以测量电流,转速传感器可以测量速度一样,振动传感器测量振动不是天经地义的事吗?
先不讨论这个问题,试想一下另外一个场景。想象一下,喂马劈柴、周游世界。坐在马背上,欣赏自然界崇山峻岭、河流湖泊,看身旁树木嗖嗖的离我们远去。由于我们的屁股和骏马相对静止,若想获得骏马和我们屁股的前进速度,必须以静止的树木为参照物。
前文图中病人必须保持安静,医生才能通过听诊器得到病人准确的心跳和脉搏信息。从这两个例子可以看出需要一个静止参考系才能获得设备运动信息。但是回想下我们在工程实际测量时,并没有寻找绝对静止的参考系,而是胶水一粘,将振动传感器安装在被测设备上。那么问题来了,这个时候我们测得的振动是被测设备真的振动吗,或者设备振动测试结果能够满足工程偏差吗?不知道这个问题大家有没有思考过,假装微笑一下。问题的答案当然是肯定的,否则BK(HBM)、PCB等这类公司就不会存在了。
为解答此问题,下文首先分析学习相对式和惯性式两类振动传感器,简要说明振动传感器测量振动的方法,然后给出振动传感器选型时需要注意的参数。
2. 相对式和惯性式振动传感器
我们常用的振动传感器是将振动信号转换为电信号,那么它就包括机械接收和机电变换两部分。机电变换是将原始机械振动转换为电压或者电荷等电信号,还包含信号调理和放大部分,不属于本次研究的范围。按照机械接收方法不同,振动传感器又分为相对式和惯性式两类,如下图所示。
由上可知,相对式机械接收振动传感器所测得的结果是被测设备相对于基准面的相对振动,就像高速公路上的测速雷达一样,测的是汽车相对于静止公路的绝对速度。绝对速度,原理简单明了;但是如果不方便或者无法找到静止参考点,就不能利用相对式机械测量振动,比如地震时地面和大楼的摆动、行驶中的汽车转向抖动、白车身振动等等,这时就必须采用惯性式机械接收振动传感器。
惯性式机械接收传感器能够测量振动的原因可以参考“[振动基础篇]3.固有频率VS共振频率,傻傻分不清楚?”一文。 此时将被测设备的振动作为激励,上图绿色方框标注的就是一个典型的有阻尼单自由度弹簧系统。
下面通过受力分析简要说明惯性式机械接收传感器的工作原理。
弹簧静变形产生的弹性力和重力大小相等,方向相反;简单起见,可认为振动传感器里面质量块仅受阻尼力、弹性力、牵连惯性力的作用。
在受迫激励下,弹簧质量系统的解由两部分组成,一部分是自由衰减振动,一部分是受迫振动。由于阻尼的存在,自由衰减振动部分会很快衰减。自由衰减振动部分消失之后,就进入稳定的等幅受迫振动状态,也是受迫振动的稳态响应。
到此我们获得了受迫振动下系统的响应。为更清晰明了,可以画出不同的阻尼比(0到2)、频率比(横轴)和振幅放大系数(纵轴)之间的关系。
由上可知,当振动频率远小于弹簧系统固有频率时,振幅放大系数约为1,可认为此时弹簧振动加速度等于被测设备的加速度,这也是振动传感器能够测量振动的原因所在。
3. 振动传感器主要技术指标
现在我们对振动传感器的工作原理已经有了初步认识,在工程选择振动传感器型号时,有以下几个指标需要重点关注:
电压灵敏度:单位为mV/ms-2(或mV/g),有1、10、50、100、1000等规格;常用的为10 mV/ms-2,表示1 ms-2的振动加速度输入可产生10mV的电压信号;电压灵敏度越大,后端调理采样回路就越简单。
分辨率:单位为ms-2,表示能够测量的最小加速度变化。
频率范围:单位为Hz, 电压灵敏度越大,弹簧质量快越大,固有频率越小;根据上文分析结果,振动频率需要远小于弹簧系统固有频率,因此可测频率范围越小。
加速度范围:单位为ms-2,可测加速度最大值与电压灵敏度的乘积固定为5V。换句话说,加速度范围与电压灵敏度呈反比关系,加速度范围随着电压灵敏度的增加而减小。
直流偏置电压:振动是个交流信号,振动传感器的输出是在直流偏置电压上叠加这个交流信号,偏置电压一般为12-14V。

测量振动的传感器:哪些传感器能用于振动的测量

振动传感器按其功能有下几种分类方法:
按机械接收原理分:相对式、惯性式;
按机电变换原理分:电动式、压电式、电涡流式、电感式、电容式、电阻式、光电式;
按所测机械量分:位移传感器、速度传感器、加速度传感器、力传感器、应变传感器、扭振传感器、扭矩传感器
1、相对式电动传感器
电动式传感器基于电磁感应原理即当运动导体固定磁场里切割磁力线时导体两端感生出电动势因此利用原理而生产传感器称电动式传感器
相对式电动传感器从机械接收原理来说位移传感器由于机电变换原理应用电磁感应电律其产生电动势同被测振动速度成正比所实际上速度传感器
2、电涡流式传感器
电涡流传感器种相对式非接触式传感器通过传感器端部与被测物体之间距离变化来测量物体振动位移或幅值电涡流传感器具有频率范围宽(0~10 kHZ)线性工作范围大、灵敏度高及非接触式测量等优点主要应用于静位移测量、振动位移测量、旋转机械监测转轴振动测量
3、电感式传感器
依据传感器相对式机械接收原理电感式传感器能把被测机械振动参数变化转换成电参量信号变化因此电感传感器有二种形式变间隙二变导磁面积
4、电容式传感器
电容式传感器般分两种类型即变间隙式和变公共面积式变间隙式测量直线振动位移变面积式测量扭转振动角位移
5、惯性式电动传感器
惯性式电动传感器由固定部分、动部分及支承弹簧部分所组成了使传感器工作位移传感器状态其动部分质量应该足够大而支承弹簧刚度应该足够小也让传感器具有足够低固有频率
根据电磁感应定律感应电动势:u=Blx&r
式B磁通密度l线圈磁场内有效长度 r x&线圈磁场相对速度
从传感器结构上来说惯性式电动传感器位移传感器而由于其输出电信号由电磁感应产生根据电磁感应电律当线圈磁场作相对运动时所感生电动势与线圈切割磁力线速度成正比因此传感器输出信号来说感应电动势同被测振动速度成正比所实际上速度传感器
6、压电式加速度传感器
压电式加速度传感器机械接收部分惯性式加速度机械接收原理机电部分利用压电晶体正压电效应其原理某些晶体(人工极化陶瓷、压电石英晶体等同压电材料具有同压电系数般都压电材料性能表查)定方向外力作用下或承受变形时晶体面或极化面上有电荷产生种从机械能(力变形)电能(电荷电场)变换称正压电效应而从电能(电场电压)机械能(变形力)变换称逆压电效应
因此利用晶体压电效应制成测力传感器振动测量由于压电晶体所受力惯性质量块牵连惯性力所产生电荷数与加速度大小成正比所压电式传感器加速度传感器
7、压电式力传感器
振动试验除了测量振动还经常需要测量对试件施加动态激振力压电式力传感器具有频率范围宽、动态范围大、体积小和重量轻等优点因而获得广泛应用压电式力传感器工作原理利用压电晶体压电效应即压电式力传感器输出电荷信号与外力成正比
8、阻抗头
阻抗头种综合性传感器集压电式力传感器和压电式加速度传感器于体其作用力传递点测量激振力同时测量该点运动响应因此阻抗头由两部分组成部分力传感器另部分加速度传感器优点保证测量点响应激振点响应使用时小头(测力端)连向结构大头(测量加速度)与激振器施力杆相连从力信号输出端测量激振力信号从加速度信号输出端测量加速度响应信号
注意阻抗头般只能承受轻载荷因而只用于轻型结构、机械部件及材料试样测量无论力传感器还阻抗头其信号转换元件都压电晶体因而其测量线路均应电压放大器或电荷放大器
9、电阻应变式传感器
电阻式应变式传感器被测机械振动量转换成传感元件电阻变化量实现种机电转换传感元件有多种形式其常见电阻应变式传感器
电阻应变片工作原理:应变片粘贴某试件上时试件受力变形应变片原长变化从而应变片阻值变化实验证明试件弹性变化范围内应变片电阻相对变化和其长度相对变化成正比测量振动的传感器:[振动基础篇]5.振动传感器为什么能够测量振动?  第2张

测量振动的传感器:振动传感器

收藏
查看我的收藏
0
有用+1
已投票
0
振动传感器
语音
编辑
锁定
上传视频
上传视频
本词条由“科普中国”科学百科词条编写与应用工作项目
审核

在高度发展的现代工业中,现代测试技术向数字化、信息化方向发展已成必然发展趋势,而测试系统的最前端是传感器,它是整个测试系统的灵魂,被世界各国列为尖端技术,特别是近几年快速发展的IC技术和计算机技术,为传感器的发展提供了良好与可靠的科学技术基础。使传感器的发展日新月益,且数字化、多功能与智能化是现代传感器发展的重要特征。
中文名
振动传感器
测试方法
机械式,光学式,电测
分 类
相对式,电感式,电流式等
别 名
换能器、拾振器
属 于
一种机电转换装置
目录
1
发展趋势
2
测试方法
?
机械式
?
光学式
?
电测
3
接收原理
4
机电变换
5
分类
振动传感器发展趋势
语音
1.引入新技术发展新功能
[1]
随着人们对自然认识的深化,会不断发现一些新的物理效应、化学效应、生物效应等。利用这些新的效应可开发出相应的新型传感器,从而为提高传感器性能和拓展传感器的应用范围提供新的可能。图尔克市场技术部产品经理兼技术支持主管杨德友向记者表示,“目前传感器界的最大特点就是不断引入新技术发展新功能。”如检测金属产品位置的电感式接近开关,它利用金属物体接近能产生电磁场的振荡感应头时在被测金属上形成的涡流效应来检测金属产品的位置。由于不同金属涡流效应的效果不同,因此不同金属的检测距离是不一样的,尤其是面对各类合金时,普通的电感式接近开关就显得力不从心,这就要求生产厂商在提高产品功能上下功夫。由于电感式接近开关其内部结构是在铁氧体磁芯上绕制线圈作为电感线圈,而铁氧体磁芯自身的限制使得电感式传感器不可能在已有的设计理念下发展,那么只能在技术上开发出可以替代铁氧体线圈的产品来提高产品的性能。图尔克公司的电感式接近开关就摒弃了铁氧体磁芯,从而去掉了磁芯的限制。这样在检测不同金属时可以通过电路调节提高产品的检测距离,并且全金属检测距离无衰减,抗干扰能力也有所提升。2. 利用新材料发展新产品传感器材料是传感器技术的重要基础,随着材料科学的进步,人们可制造出各种新型传感器。例如用高分子聚合物薄膜制成温度传感器,光导纤维能制成压力、流量、温度、位移等多种传感器,用陶瓷制成压力传感器。高分子聚合物能随周围环境的相对湿度大小成比例地吸附和释放水分子。将高分子电介质做成电容器,测定电容容量的变化,即可得出相对湿度。利用这个原理制成的等离子聚合法聚苯乙烯薄膜温度传感器,具有测湿范围宽、温度范围宽、响应速度快、尺寸小、可用于小空间测湿、温度系数小等特点。陶瓷电容式压力传感器是一种无中介液的干式压力传感器。采用先进的陶瓷技术,厚膜电子技术,其技术性能稳定,年漂移量的满量程误差不超过0.1%,温漂小,抗过载更可达量程的数百倍。光导纤维的应用是传感材料的重大突破,光纤传感器与传统传感器相比有许多特点:灵敏度高、结构简单、体积小、耐腐蚀、电绝缘性好、光路可弯曲、便于实现遥测等。而光纤传感器与集成光路技术的结合,加速了光纤传感器技术的发展。将集成光路器件代替原有光学元件和无源光器件,光纤传感器又具有了高带宽、低信号处理电压、可靠性高、成本低等特点。
振动传感器测试方法
语音
在工程振动测试领域中,测试手段与方法多种多样,但是按各种参数的测量方法及测量过程的物理性质来分,可以分成三类。
振动传感器机械式
将工程振动的参量转换成机械信号,再经机械系统放大后,进行测量、记录,常用的仪器有杠杆式测振仪和盖格尔测振仪,它能测量的频率较低,精度也较差。但在现场测试时较为简单方便。
振动传感器光学式
将工程振动的参量转换为光学信号,经光学系统放大后显示和记录。如读数显微镜和激光测振仪等。
振动传感器电测
振动传感器
[2]
将工程振动的参量转换成电信号,经电子线路放大后显示和记录。电测法的要点在于先将机械振动量转换为电量(电动势、电荷、及其它电量),然后再对电量进行测量,从而得到所要测量的机械量。这是目前应用得最广泛的测量方法。上述三种测量方法的物理性质虽然各不相同,但是,组成的测量系统基本相同,它们都包含拾振、测量放大线路和显示记录三个环节。1、拾振环节。把被测的机械振动量转换为机械的、光学的或电的信号,完成这项转换工作的器件叫传感器。2、测量线路。测量线路的种类甚多,它们都是针对各种传感器的变换原理而设计的。比如,专配压电式传感器的测量线路有电压放大器、电荷放大器等;此外,还有积分线路、微分线路、滤波线路、归一化装置等等。3、信号分析及显示、记录环节。从测量线路输出的电压信号,可按测量的要求输入给信号分析仪或输送给显示仪器(如电子电压表、示波器、相位计等)、记录设备(如光线示波器、磁带记录仪、X—Y 记录仪等)等。也可在必要时记录在磁带上,然后再输入到信号分析仪进行各种分析处理,从而得到最终结果。
振动传感器接收原理
语音
振动传感器 原理
振动传感器在测试技术中是关键部件之一,它的作用主要是将机械量接收下来,并转换为与之成比例的电量。由于它也是一种机电转换装置。所以我们有时也称它为换能器、拾振器等。振动传感器并不是直接将原始要测的机械量转变为电量,而是将原始要测的机械量做为振动传感器的输入量,然后由机械接收部分加以接收,形成另一个适合于变换的机械量,最后由机电变换部分再将变换为电量。因此一个传感器的工作性能是由机械接收部分和机电变换部分的工作性能来决定的。1、相对式机械接收原理由于机械运动是物质运动的最简单的形式,因此人们最先想到的是用机械方法测量振动,从而制造出了机械式测振仪(如盖格尔测振仪等)。传感器的机械接收原理就是建立在此基础上的。相对式测振仪的工作接收原理是在测量时,把仪器固定在不动的支架上,使触杆与被测物体的振动方向一致,并借弹簧的弹性力与被测物体表面相接触,当物体振动时,触杆就跟随它一起运动,并推动记录笔杆在移动的纸带上描绘出振动物体的位移随时间的变化曲线,根据这个记录曲线可以计算出位移的大小及频率等参数。由此可知,相对式机械接收部分所测得的结果是被测物体相对于参考体的相对振动,只有当参考体绝对不动时,才能测得被测物体的绝对振动。这样,就发生一个问题,当需要测的是绝对振动,但又找不到不动的参考点时,这类仪器就无用武之地。例如:在行驶的内燃机车上测试内燃机车的振动,在地震时测量地面及楼房的振动……,都不存在一个不动的参考点。在这种情况下,我们必须用另一种测量方式的测振仪进行测量,即利用惯性式测振仪。2、惯性式机械接收原理惯性式机械测振仪测振时,是将测振仪直接固定在被测振动物体的测点上,当传感器外壳随被测振动物体运动时,由弹性支承的惯性质量块将与外壳发生相对运动,则装在质量块上的记录笔就可记录下质量元件与外壳的相对振动位移幅值,然后利用惯性质量块与外壳的相对振动位移的关系式,即可求出被测物体的绝对振动位移波形。
振动传感器机电变换
语音
一般来说,振动传感器在机械接收原理方面,只有相对式、惯性式两种,但在机电变换方面,由于变换方法和性质不同,其种类繁多,应用范围也极其广泛。在现代振动测量中所用的传感器,已不是传统概念上独立的机械测量装置,它仅是整个测量系统中的一个环节,且与后续的电子线路紧密相关。由于传感器内部机电变换原理的不同,输出的电量也各不相同。有的是将机械量的变化变换为电动势、电荷的变化,有的是将机械振动量的变化变换为电阻、电感等电参量的变化。一般说来,这些电量并不能直接被后续的显示、记录、分析仪器所接受。因此针对不同机电变换原理的传感器,必须附以专配的测量线路。测量线路的作用是将传感器的输出电量最后变为后续显示、分析仪器所能接受的一般电压信号。因此,振动传感器按其功能可有以下几种分类方法:按机械接收原理分:相对式、惯性式;按机电变换原理分:电动式、压电式、电涡流式、电感式、电容式、电阻式、光电式;按所测机械量分:位移传感器、速度传感器、加速度传感器、力传感器、应变传感器、扭振传感器、扭矩传感器。以上三种分类法中的传感器是相容的。
振动传感器分类
语音
相对式电动式传感器基于电磁感应原理,即当运动的导体在固定的磁场里切割磁力线时,导体两端就感生出电动势,因此利用这一原理而生产的传感器称为电动式传感器。相对式电动传感器从机械接收原理来说,是一个位移传感器,由于在机电变换原理中应用的是电磁感应定律,其产生的电动势同被测振动速度成正比,所以它实际上是一个速度传感器。电涡流式电涡流传感器是一种相对式非接触式传感器,它是通过传感器端部与被测物体之间的距离变化来测量物体的振动位移或幅值的。电涡流传感器具有频率范围宽(0~10 kHZ),线性工作范围大、灵敏度高以及非接触式测量等优点,主要应用于静位移的测量、振动位移的测量、旋转机械中监测转轴的振动测量。电感式依据传感器的相对式机械接收原理,电感式传感器能把被测的机械振动参数的变化转换成为电参量信号的变化。因此,电感传感器有二种形式,一是可变间隙,二是可变导磁面积。电容式电容式传感器一般分为两种类型。即可变间隙式和可变公共面积式。可变间隙式可以测量直线振动的位移。可变面积式可以测量扭转振动的角位移。惯性式惯性式电动传感器由固定部分、可动部分以及支承弹簧部分所组成。为了使传感器工作在位移传感器状态,其可动部分的质量应该足够的大,而支承弹簧的刚度应该足够的小,也就是让传感器具有足够低的固有频率。根据电磁感应定律,感应电动势为:u=Blx&r式中B为磁通密度,l为线圈在磁场内的有效长度, r x&为线圈在磁场中的相对速度。从传感器的结构上来说,惯性式电动传感器是一个位移传感器。然而由于其输出的电信号是由电磁感应产生,根据电磁感应电律,当线圈在磁场中作相对运动时,所感生的电动势与线圈切割磁力线的速度成正比。因此就传感器的输出信号来说,感应电动势是同被测振动速度成正比的,所以它实际上是一个速度传感器。压电式压电式加速度传感器的机械接收部分是惯性式加速度机械接收原理,机电部分利用的是压电晶体的正压电效应。其原理是某些晶体(如人工极化陶瓷、压电石英晶体等,不同的压电材料具有不同的压电系数,一般都可以在压电材料性能表中查到。)在一定方向的外力作用下或承受变形时,它的晶体面或极化面上将有电荷产生,这种从机械能(力,变形)到电能(电荷,电场)的变换称为正压电效应。而从电能(电场,电压)到机械能(变形,力)的变换称为逆压电效应。因此利用晶体的压电效应,可以制成测力传感器,在振动测量中,由于压电晶体所受的力是惯性质量块的牵连惯性力,所产生的电荷数与加速度大小成正比,所以压电式传感器是加速度传感器。压电式力在振动试验中,除了测量振动,还经常需要测量对试件施加的动态激振力。压电式力传感器具有频率范围宽、动态范围大、体积小和重量轻等优点,因而获得广泛应用。压电式力传感器的工作原理是利用压电晶体的压电效应,即压电式力传感器的输出电荷信号与外力成正比。阻抗头阻抗头是一种综合性传感器。它集压电式力传感器和压电式加速度传感器于一体,其作用是在力传递点测量激振力的同时测量该点的运动响应。因此阻抗头由两部分组成,一部分是力传感器,另一部分是加速度传感器,它的优点是,保证测量点的响应就是激振点的响应。使用时将小头(测力端)连向结构,大头(测量加速度)与激振器的施力杆相连。从“力信号输出端”测量激振力的信号,从“加速度信号输出端”测量加速度的响应信号。注意,阻抗头一般只能承受轻载荷,因而只可以用于轻型的结构、机械部件以及材料试样的测量。无论是力传感器还是阻抗头,其信号转换元件都是压电晶体,因而其测量线路均应是电压放大器或电荷放大器。电阻应变式电阻式应变式传感器是将被测的机械振动量转换成传感元件电阻的变化量。实现这种机电转换的传感元件有多种形式,其中最常见的是电阻应变式的传感器。电阻应变片的工作原理为:应变片粘贴在某试件上时,试件受力变形,应变片原长变化,从而应变片阻值变化,实验证明,在试件的弹性变化范围内,应变片电阻的相对变化和其长度的相对变化成正比。激光激光传感器利用激光技术进行测量的传感器。它由激光器、激光检测器和测量电路组成。激光传感器是新型测量仪表,它的优点是能实现无接触远距离测量,速度快,精度高,量程大,抗光、电干扰能力强等,极适合于工业和实验室的非接触测量应用。
词条图册
更多图册
解读词条背后的知识
查看全部
ICGOO在线商城
ICGOO在线商城是国内领先的元器件采购平台
振动传感器分类有哪几种?依据是什么?
在高度发展的现代工业中,现代测试技术向数字化、信息化方向发展已成必然发展趋势,而测试系统的最前端是传感器,它是整个测试系统的灵魂,被世界各国列为尖端技术,特别是近几年快速发展的IC技术和计算机技术,为传感器的发展提供了良好与可靠的科学技术基础。使传感器的发展日新月益,且数字...
2021-03-010
富昌电子
富昌电子(上海)有限公司
ST 意法 – 适用于监视工业机械状态的数字振动传感器
意法半导体的IIS3DWB是一款三轴数字振动传感器系统级封装,可在很宽的带宽范围内提供低噪声、稳定且可重复的灵敏度。IIS3DWB可在高达105°C 的扩展温度范围内运行,非常适用于工业应用中的振动监测。它结合了高性能、低功耗,以及FIFO和中断等数字功能,可帮助开发人员成...
2020-05-280
科技生活观点
每日推送科技资讯 欢迎关注
安防最新黑科技--智能声音振动传感器
...
2021-04-010
雕爷学编程
专注Arduino开源硬件扩展应用
「Arduino」37种传感器系列实验(4)——振动传感器模块
37款传感器的提法,在网络上广泛流传,其实Arduino能够兼容的传感器模块肯定是不止37种的。鉴于本人手头积累了一些传感器,依照实践(动手试试)出真知的理念,以学习和交流为目的,这里准备逐一做做实验,不管能否成功,都会记录下来---小小的进步或是搞不掂的问题,希望能够抛砖...
2019-07-270
韦克威科技
深圳韦克威科技有限公司
测试振动传感器的方法
振动测试包括两方面的内容:第一,测量工作机械或结构在工作状态下存在的振动,如测量振动位移、速度、加速度、频率和相位等参数,了解被测对象的振动状态评定等级和寻找振源,以及进行监测、分析、诊断和预测;第二,对机械设备或结构施加某种激励,测量其受迫振动,以便求得被测对象的振动力学...
2021-07-220
参考资料
1.

振动传感器种类、原理及发展趋势
.百度文库.2008-06-17[引用日期2015-02-15]
2.

振动传感器
测量振动的传感器:[振动基础篇]5.振动传感器为什么能够测量振动?  第3张

测量振动的传感器:摆动/振动

厚度/宽度

高度/高度差

外径/内径

行程/定位

摆动/振动

偏差/偏心

形状/轮廓

3D检测

测量传感器的选择
摆动/振动
摆动/振动
此处介绍的传感器用于测量目标物的振动。在测量目标物的摆动和振动时响应性非常重要。
还可以提供结合测量仪器使用的显示器或记录仪的提案,详情请咨询就近的KEYENCE办事处。
下载目录
反射(同轴)
制动盘的振动测量
更多内容
反射
发动机的振动测量
更多内容
光切
固定皮带的振动测量
更多内容
反射(同轴)
铝箔的偏差测量
更多内容
光切
机械手的残余振动测量
更多内容
反射(同轴)
HDD的摆动、高度差测量
更多内容
使用非接触式激光位移计,可以在不损伤圆盘的情况下进行全数检测。采用同轴测量,即便在很狭小的空间内也可以安装。
彩色激光同轴位移计
CL-3000 系列

目录下载
非接触多点测量振动。由于是高速采样,即使是微小的高速振动也可以测量。
超高速/高精度CMOS激光位移传感器
LK-G5000 系列

目录下载
并非以“点”,而是以“面”进行微小的振动的测量。可测量线激光照射到的部位的平均振动。
2D/3D 线激光测量仪
LJ-X8000 系列

目录下载
在缝口跟前测量箔的偏差程度。即使目标物因为偏差发生倾斜,角度特性好的 CL 系列也能稳定测量。
彩色激光同轴位移计
CL-3000 系列

目录下载
测量机械手停止时摇晃的残余振动。在使其实际握持焊接焊炬等工具的状态,测量部位的面不平整,但如果使用轮廓测量仪,就能够测量。
2D/3D 线激光测量仪
LJ-X8000 系列

目录下载
采用?8 mm的超小型测量头,在狭窄的范围也能设置多个测量头。由此,可抑制装置设计工时、部件购买费。
彩色激光同轴位移计
CL-3000 系列

目录下载

您可能感兴趣的文章

本文地址:https://www.ceomba.cn/3001.html
文章标签: ,  
版权声明:本文为原创文章,版权归 ceomba 所有,欢迎分享本文,转载请保留出处!

文件下载

老薛主机终身7折优惠码boke112

上一篇:
下一篇:

评论已关闭!