压电式传感器:压电传感器的信号调节

2021/11/04 01:35 · 传感器知识资讯 ·  · 压电式传感器:压电传感器的信号调节已关闭评论
摘要:

压电式传感器:压电传感器的信号调节作者:EduardoBartolome,德州仪器(TI)医疗事业部系统工程师引言本文介绍信号调节的一些原理。我们利用压电传感器来阐述这些原理,因为其调节要求综合使用许多传统工

压电式传感器:压电传感器的信号调节

作者:Eduardo Bartolome,德州仪器 (TI) 医疗事业部系统工程师
引言
本文介绍信号调节的一些原理。我们利用压电传感器来阐述这些原理,因为其调节要求综合使用许多传统工具,并且此类传感器具有一些其他类型传感器所没有的挑战。
压电传感器
用于感应和激励的压电传感器应用延伸到了许多领域。本文主要介绍对一些物理强度的感应,即加速度、振动、振荡和压力,从传感器及其要求信号调节的角度来看其可以被认为是类似的。1就加速度而言,传感器灵敏度通常被表示为一个与外力即加速度(大多数时候称作重力加速度 g)成比例关系的电荷。然而,从严格物理意义上来讲,传感器输出一个实际由其变形/偏斜情况决定的电荷。
例如,图 1 显示了安装于顶部位置的一个传感器,与此同时底部正受到一个外力的拉拽,即 Fext。在使用加速计的情况下,固定端(顶部)会粘附在要测量加速度的物体上,同时外力为粘附于另一端(底部)的质量的惯性,而这一端不断想要保持静止。就固定于顶端的参考坐标系而言(假设传感器充当的是一个弹簧,其具有很高的弹簧系数 K),偏斜 x 会形成一种反作用力:
最终,质量(传感器偏斜)将会在下列情况下停止移动/改变:
图 1加速度力作用下的传感器
由于电荷 Q 与偏斜成比例关系(一阶),而偏斜与力成比例关系,因此 Q 与力也成比例关系。施加一个 Fmax 最大值的正弦力,会形成一个 Qmax 最大值的正弦电荷。换句话说,当正弦力为最大值时,对来自传感器的电流求积分可得到Qmax。增加正弦波的频率,同时会增加电流;但是会更快地达到峰值,即保持积分 (Qmax) 恒定。厂商会以传感器可用频率范围内 Qmax 与 Fmax 的比率,来说明灵敏度规范。但是,由于传感器的机械性质,传感器实际上有谐振频率(可用频率范围以上),其中一个即使很小的振荡力都会产生相对较大的偏转,从而得到较大的输出振幅。
如果忽略谐振的影响,则我们可以将压电传感器一阶建模为一个与传感器寄生电容(此处称作 Cd)并联的电流源,或者也可以将其建模为一个与 Cd 串联的电压源。该电压为存储电荷时在传感器阳极上看到的等效电压。但是,我们需要注意的是,就许多应用的仿真而言,第二种方法要更加简单一些。如前所述,电流与偏斜变化的速率成比例关系;例如,拿恒幅加速度的正弦 AC 曲线来说,电流生成器的振幅必须根据频率来改变。
最后,如果这种生成器需要代表实际物理信号,则可以使用变压器,如图 2 所示。本例中,我们建模了一个具有 0.5 pC/g 灵敏度和 500 pF 寄生电容的生成器。正弦波生成器每单位 g 输出 1V,以实现仿真。变压器在其次级线圈将它向下调节至 1mV。施加给 C1(500 pF)的 1-mV 摆动,将会如我们预计的那样在下一级注入 Q=VC=0.5 pC。
图 2 压电传感器模型
电荷放大器分析
图 3 显示了经典电荷放大器的基本原理,其可以用作一个信号调节电路。这种情况下,我们选择电流源模型,表明传感器主要为一种带高输出阻抗的器件。
输入阻抗
信号调节电路必须具有非低的输入阻抗,以收集传感器的大部分电荷输出。因此,电荷放大器是理想的解决方案,因为只要放大器在这些信号频率下保持高增益,其输入便会让传感器信号出现虚拟接地。换句话说,如果传感器的任何电荷想要在传感器阳极 (Cd) 或者放大器输入寄生电容 (Ca) 上增大,在放大器输入端就会形成电压。通过拉或吸取相同量的负反馈网络电荷电流,即 RFB 和 CFB,这种电压便立即得到了补偿。
图 3 用于信号调节的电荷放大器
增益
由于放大器的信号输入为虚拟接地,因此输入电流形成了一种输出电压摆动;并且高频增益由 CFB 的值设定(RFB 影响减小,在“带宽”部分后面再进行叙述)。请注意,电容越小,增益越大。增益的近似值为:
还需注意,电路增益根本上并非取决于传感器的电容 (Cd),但最好还是注意该值对噪声的影响。
带宽
为了能够正确地对放大器进行偏置(为放大器输入偏置电流提供一个 DC 路径),一个反馈电阻 (Rf) 是必需的。在更低频率下,反馈路径的电容电路变为开路,而反馈电阻变为主要电阻,从而有效降低增益。在较高频率下,电容电路的阻抗变得更小,从而有效消除电阻反馈通路的影响。对AC 物理激励的最终电路响应(包括传感器的寄生电容),为高通滤波器的响应,其极频为:
相关信号带宽由应用决定;因此,降低电容增加增益的同时,也需要增加电阻来保持低极频。增加电阻会影响解决方案的其他方面。除影响噪声以外(在“噪声”部分详细介绍),电阻越高,实际实现就越难—难在寻找到现成的电阻,以及保证 PCB 的线迹到线迹寄生电阻大于 RFB 本身。如果电路规范允许使用几百兆欧量级的电阻,则表面贴装电阻马上就可以使用2,并且不要求使用先进的布局技术(例如使用防护频带等)。
如前所述,限制电阻值增加的另一个因素是电路偏置。放大器的输入偏置电流通过该电阻,形成输出偏置电压。通过选用具有低输入偏置电流的放大器,例如:FET 输入放大器等,可以最小化这种电压。只要反馈电阻器值低于 1GΩ,并且可以利用各级之间的 AC 耦合来滤波产生的偏置,那么这种放大器的输入偏置电流(一般低于 100pA)就应该没有问题。
请注意,由于保持高通滤波器低极频存在困难,因此在近 DC 应用中使用压电传感器也变得越来越困难(尽管传感器本身的漏电流非常小)。
尽管并非该放大级的组成部分,但也需要在某处添加一个低通滤波器,旨在降低电路对传感器谐振频率下无用信号的响应,同时降低相关频带的总数字化和混叠噪声。
噪声
最后,我们需要最大化信噪比 (SNR)。在进行仿真以前进行简单的理论噪声分析会有所帮助。图 4 显示了电荷放大器的主噪声源。输出噪声谱密度可以表示为:
其中
图 4 电荷放大器的噪声源
且s=2πfj。方程式 5 为电荷放大器的经典噪声解决方案。相对于 Cd,Ca 一般非常小。因此,方程式 5 可以简化为:
实际上,如果考虑使用高通滤波器极频以上频率,则可以进一步减小第二项:
我们可以使用几种方法来对各种趋势进行分析。极点(RfbCfbS + 1 项)可以被看作是恒定,因为增加 RFB 会要求降低 Cfb,反之亦然。从这个角度来看,增加 RFB 会增加方程式 8 的三项。第一项相应的电压噪声会随 Rfb 线性增加;第二项相应的电压噪声也会增加;第三项相应的电压噪声会随 RFB 的平方根增加,因为 ERFB= ,其中 k=玻耳兹曼常数,而 T=凯氏度温度。然而,由于 CFB 变得更小,增益会随 RFB 增加(参见方程式 3)。随 Rfb 增加而出现的信号增加,与方程式 8 中前两个噪声项的所有增加相似,但大于最后一个噪声项的增加,从而改善了总 SNR。归根结底就是要尽可能多地增加 Rfb。需要注意的另一个趋势是从噪声角度来看,传感器的寄生电容越多,传感器就越不那么理想。
仿真结果
为了获得更为实际的电路实施,我们选用了TI 的 OPA337。这款放大器拥有低输入电压和低输入电流噪声(请参见图 5,其截取自产品说明书3),同时接受 3-V 单极电源。图 6 显示了 TI SPICE型仿真程序中这种电路的模型,即 TINA-TI?。
图 5 OPA337 的输入电压和输入电流噪声
图 6 使用 OPA337 的电路 TINA-TI 模型
这种实施中,极点为 0.86 Hz。我们可以在 5 Hz 下对方程式 7 进行分析,以仔细检查公式的精确度:
在第一项中,如果INA ≈ 0.01 fA/ ,且 RFB=270 MΩ,则该项对输出噪声的贡献值约为 (2.7 nV/ /5.85=0.5 nV/ 。
在第二项中,如果EA ≈ 60 nV / ,则这一项对输出噪声的贡献值约为 120nV / 。
在第三项中,如果RFB=270MΩ,则这一项对输出噪声的贡献值约为(2μV/ /5.85=340 nV / 。

把所有这三项二次方相加,得到约 360 nV / ,其接近图 7 的仿真结果。但是,需要注意的是所用噪声值不同于图 5 所示数据表值。OPA337 的 TINA-TI 噪声模型并不精确,通过对图 8 所示简化电路进行仿真并得到图 9 所示结果(其应与图 5 所示一样),可以证实这一点。
图 7 所示模型的输出噪声仿真
图 8 放大器噪声分析的 TINA-TI 仿真电路
图 9 所示电路的输出噪声仿真
这些结果突出了进行一次快速理论/工艺分析的重要性。该放大器电路并不准确,需要在 TINA-TI 中解释说明,以获得实际数值。我们可以在参考文献 4 中找到完成这项工作的方法,其为 Art Kay 关于噪声的重要系列文章的第四部分。一种稍微更简单的方法是,只需将噪声(图 10 中的 Vnoise 和 Inoise)添加到图 8 所示电路,以对缺少项进行补偿。
图 10 添加至图 8 所示电路的噪声
尽管不是很完美,但图 11 所示结果看起来比图 9 所示结果要更加接近于规范。
图 11 所示电路的输出噪声仿真
图 12 添加噪声源后图 6 电路的 TINA-TI 模型
利用图 6 所示原始电路,我们使用最初指定的一些噪声值,可以通过方程式 7 再次估算出 5Hz 的噪声。
在第一项中,如果 INA≈0.3 fA/ ,且 RFB=270 MΩ,则该项对输出噪声的贡献值约为 (80 nV/ /5.85=14 nV/ 。
在第二项中,如果 EA ≈ 130 nV / ,则这一项对输出噪声的贡献值约为 260 nV / 。
在第三项中,如果 RFB=270 MΩ,则这一项对输出噪声的贡献值约为 (2 μV/ /5.85=340 nV / 。

把所有这三项二次方相加,得到约为 430 nV / ,如图 13 所示,其非常接近包括经校准噪声源的图 12 所示电路的仿真结果。
图 13 所示电路的输出噪声仿真
现在,请您思考噪声变化与反馈电阻的对比结果。将方程式 7 第一项的 RFB 从270 MΩ 改为 540 MΩ(且把 CFB 除以 2,从 680 pF 降至 340 pF,目的是保持极频恒定),对输出参考噪声产生如下影响:
在第一项中,如果INA≈0.3 fA/ ,且RFB=540 MΩ,则该项对输出噪声的贡献值约为(160 nV/ /5.85=28 nV/ 。
在第二项中,如果EA ≈ 130 nV / ,则这一项对输出噪声的贡献值约为320 nV / 。
在第三项中,如果RFB=540 MΩ,则这一项对输出噪声的贡献值约为(3 μV/ /5.85=510 nV / 。
把所有这三项二次方相加,得到约为 600 nV / ,其再次接近仿真结果(参见图 14)。不出所料,输出噪声上升。然而,电阻加倍允许电容除以2,从而有效地使增益加倍(即输出信号加倍)。即使 RFB 为主导噪声源,且它的增加会使其噪声增加,我们也可以实现3dB的SNR改善,因为输出信号加倍远超出增加的噪声。
图 14 Rfb 加倍而 Cfb 减半后图 12 所示电路的输出噪声仿真
其他实际问题 利用 T 型网络构建等效大电阻
当我们需要在反馈网络中使用非常大的电阻时,利用由许多更小、更易使用的元件构成的一个 T 型网络来构建这些大电阻,对我们很有吸引力(参见图 15)。但我们一般不建议使用这种方法,因为 T 型网络会带来偏置和噪声大增益,从而一般会产生更糟糕的 SNR。
图 15 T型网络反馈电路
使用差分输入
到目前为止,我们只字未提使用差分输入来降低噪声的好处。为了简单起见,我们以单端对建模放大器进行了分析,而图 16 显示的是一个带差分输入的改进配置结构。这种配置结构同时具有两个优势:
它固有两倍单端输入电路增益(电荷整合到 C2 和 C4 中),而噪声仅以平方根函数增加(即噪声源不相关)。
电荷放大器是一种非常敏感(高增益)的电路。图17表明任何输入干扰信号的电容耦合(此处为 60-Hz 极板网栅)都会有效注入电流。就单端放大器而言,这意味着端子中的一个注入电流,而其他则接地;也就是说,放大器只会放大干扰信号。就差分输入来说,施加于两个端子的共模信号会相互抵消(假设寄生和反馈网络相同)。图 18 中,需要注意的是单端输入(蓝色轨迹)60-Hz 极板网栅的耦合结果,以及 60-Hz 共模噪声如何被干扰信号(黄色轨迹)相互抵消的差分输入极大降低。本例中,为了方便理解,我们并没有尝试匹配超出 10% 组件容限的差动输入。
图 16 使用差分输入的改进电路
图 17 60-Hz 共模噪声源对差分输入放大器影响情况模型
图 18 差分放大器基本消除了共模噪声
结论
用户能够想到压电传感器,是因为这些器件可根据其失真情况输出电荷。就此而论,电荷放大器非常适合于这种应用。本文介绍了设计这种电路时需要牢记的一些一般性原则,例如:尽可能多地增加反馈电阻,密切注意放大器的输入偏置电流,以及使用一种差动结构等。本文还阐述了细化仿真以前进行理论分析的有效性。
参考文献
如欲了解本文的更多详情,可以登录 下载

压电式传感器:压电传感器的信号调节  第1张

压电式传感器:压电式传感器,什么是压电式传感器,压电式传感器介绍

  如果被测物理量是缓慢变化的动态量,而测量回路的时间常数又不大,则造成传感器灵敏度下降。因此为了扩大传感器的低频响应范围,就必须尽量提高回路的时间常数。
  但这不能靠增加测量回路的电容量来提高时间常数,因为传感器的电压灵敏度与电容成反比的,切实可行的办法是提高测量回路的电阻。由于传感器本身的绝缘电阻一般都很大,所以测量回路的电阻主要取决于前置放大器的输入电阻。放大器的输入电阻越大,测量回路的时间常数就越大,传感器的低频响应也就越好。
  压电式加速度传感器的压电元件是二片并联连接的石英晶片,放大器是一个超小型静电放大器。这样引线非常短,引线电容几乎等于零就避免了长电缆对传感器灵敏度的影响。放大器的输入端可以得到较大的电压信号,这样弥补了石英晶体灵敏度低的缺陷。
  传感器感受振动时,质量块感受与传感器基座相同的振动,并受到与加速度方向相反的惯性力的作用。这样,质量块就有一正比于加速度的交变力作用在压电片上。由于压电片压电效应,两个表面上就产生交变电荷,当振动频率远低于传感器的固有频率时,传感器的输出电荷(电压)与作用力成正比,亦即与试件的加速度成正比。
  输出电量由传感器输出端引出,输入到前置放大器后就可以用普通的测量仪器测出试件的加速度,如在放大器中加进适当的积分电路,就可以测出试件的振动速度或位移。
压电式传感器:压电传感器的信号调节  第2张

压电式传感器:压电式传感器

收藏
查看我的收藏
0
有用+1
已投票
0
压电式传感器
语音
编辑
锁定
讨论
上传视频
上传视频
压电式传感器
[1]
是一种基于压电效应的传感器。是一种自发电式和机电转换式传感器。它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。压电式传感器用于测量力和能变换为电的非电物理量。它的优点是频带宽、灵敏度高、信噪比高、结构简单、工作可靠和重量轻等。缺点是某些压电材料需要防潮措施,而且输出的直流响应差,需要采用高输入阻抗电路或电荷放大器来克服这一缺陷。
中文名
压电式传感器
外文名
piezoelectric type sensor
压电效应
分为正压电效应和逆压电效应
压电材料
压电单晶压电多晶,有机压电材料
逆效应
或称为电致伸缩效应
参 数
压电常数,机械耦合系数等
压电表达式
Q=d*F
目录
1
概述
?
压电效应
?
压电材料
?
正压电效应
?
逆压电效应
?
压电材料
2
主要参数
3
压电转换
4
结构
5
石英有关
6
压电分析
7
压电陶瓷
8
等效电路
9
串并联
10
应用
压电式传感器概述
编辑
语音
压电式传感器压电效应
压电式传感器
压电效应可分为正压电效应和逆压电效应。正压电效应是指:当晶体受到某固定方向外力的作用时,内部就产生电极化现象,同时在某两个表面上产生符号相反的电荷;当外力撤去后,晶体又恢复到不带电的状态;当外力作用方向改变时,电荷的极性也随之改变;晶体受力所产生的电荷量与外力的大小成正比。压电式传感器大多是利用正压电效应制成的。逆压电效应是指对晶体施加交变电场引起晶体机械变形的现象,又称电致伸缩效应。用逆压电效应制造的变送器可用于电声和超声工程。压电敏感元件的受力变形有厚度变形型、长度变形型、体积变形型、厚度切变型、平面切变型 5种基本形式(见图)。压电晶体是各向异性的,并非所有晶体都能在这 5种状态下产生压电效应。例如石英晶体就没有体积变形压电效应,但具有良好的厚度变形和长度变形压电效应。
压电式传感器压电材料
它可分为压电单晶、压电多晶和有机压电材料。压电式传感器中用得最多的是属于压电多晶的各类压电陶瓷和压电单晶中的石英晶体。其他压电单晶还有适用于高温辐射环境的铌酸锂以及钽酸锂、镓酸锂、锗酸铋等。压电陶瓷有属于二元系的钛酸钡陶瓷、锆钛酸铅系列陶瓷、铌酸盐系列陶瓷和属于三元系的铌镁酸铅陶瓷。压电陶瓷的优点是烧制方便、易成型、耐湿、耐高温。缺点是具有热释电性,会对力学量测量造成干扰。有机压电材料有聚二氟乙烯、聚氟乙烯、尼龙等十余种高分子材料。有机压电材料可大量生产和制成较大的面积,它与空气的声阻匹配具有独特的优越性,是很有发展潜力的新型电声材料。60年代以来发现了同时具有半导体特性和压电特性的晶体,如硫化锌、氧化锌、硫化钙等。利用这种材料可以制成集敏感元件和电子线路于一体的新型压电传感器,很有发展前途。
压电式传感器
压电式传感器大致可以分为4种,即:压电式测力传感器,压电式压力传感器,压电式加速度传感器及高分子材料压力传感器。
压电式传感器正压电效应
某些物质,当沿着一定方向对其加力而使其变形时,在一定表面上将产生电荷,当外力去掉后,又重新回到正常的不带电状态,这种现象称为正压电效应 。
压电式传感器逆压电效应
如果在这些物质的极化方向施加电场,这些物质就在一定方向上产生机 械变形或机械应力,当外电场撤去时,这些变形或应力也随之消失,这种现 象称之为逆压电效应,或称之为电致伸缩效应。
压电式传感器压电材料
明显呈现压电效应的敏感功能材料叫压电材料 。压电单晶体,如石英、酒石酸钾钠等;多晶压电陶瓷, 如钛酸钡、锆钛酸铅、铌镁酸铅等,又称为压电陶瓷。此外,聚偏二氟乙烯(PVDF) 作为一种新型的高分子物性型传感材料得到广泛的应用。
压电式传感器主要参数
编辑
语音
(1)压电常数是衡量材料压电效应强弱的参数, 它直接关系到压电输出的灵敏度。(2)压电材料的弹性常数、 刚度决定着压电器件的固有频率和动态特性。(3)对于一定形状、 尺寸的压电元件, 其固有电容与介电常数有关; 而固有电容又影响着压电传感器的频率下限。(4)在压电效应中,机械耦合系数等于转换输出能量(如电能)与输入的能量(如机械能)之比的平方根; 它是衡量压电材料机电能量转换效率的一个重要参数。(5)压电材料的绝缘电阻将减少电荷泄漏, 从而改善压电传感器的低频特性。(6)压电材料开始丧失压电特性的温度称为居里点温度。
压电式传感器压电转换
编辑
语音
压电关系表达式:Q=d*F,其中d:压电常数更一般表达式:电荷密度q  ,(用单位面积受力表示)其中:i=1,2,3表示晶体极化方向,指的是与产生电荷的面垂直的方向;j=1,2,3,4,5,6表示受力方向,1~3表示x,y.z向受力,4~6表示剪切力方向如q1表示法向矢量为x的两个面产生的电荷受x向(拉)力作用后在z方向产生电荷的表达式:受z向力作用后在z方向产生电荷的表达式:各表达式见图片:
压电式传感器结构
编辑
语音
石英(SiO2)晶体结晶形状为六角形晶柱。两端为一对称的棱锥,六棱柱是它的基本组织,纵轴 z-z 称作光轴,通过六角棱线而垂直于光轴的轴线 x-x 称作电轴,垂直于棱面的轴线 y-y 称作机械轴。如果从晶体中切下一个平行六面体,并使其晶面分别平行于 z-z 、y-y 、x-x轴线,这个晶片在正常状态下不呈现电性。当施加外力时,将沿 x-x 方向形成电场,其电荷分布在垂直于 x-x 轴的平面上
压电式传感器石英有关
编辑
语音
石英的化学式为 SiO2 ,在一个晶体单元中,有三个硅离子和六个氧离子 ,后者是成对的,所以一个和两个交替排列。当没有力作用时,硅离子和氧 离子在垂直于晶体 Z 轴的 XY 平面上的投影恰好等效为正六边形排列,如上图 a 示。这时正负离子正好分布在正六边形的顶角上,呈现电中性。如果沿 X 方向压缩,如上图 b 所示,则硅离子 1 被挤入氧离子 2 和 6 之间,而氧离子 4 被挤入硅离子 3 和 5 之间,结果表面 A 上呈现负电荷,而在表面 B 上呈现正电荷。这一现象称为纵向压电效应。..若沿 Y 方向压缩,如上图 c 所示,硅离子 3 和氧离子 2 ,以及硅离子 5 和氧离子 6 都向内移动同样的数值,故在电极 C 和 D 上不呈现电荷,而在表面 A 和 B 上, 即在 X 轴的端面上又呈现电荷,但与图 b 的极性正好相反,这时称为横向压电效应。从研究的模型同样可以看出:如果是使其伸长而不是压缩时,则电荷的极性正好相反。总之,石英等单晶体材料是各向异性的物体,在 X 或 Y 轴向施力时,在与 X 轴垂直的 面上产生电荷,电场方向与 X 轴平行,在 Z 轴方向施力时,不能产生压电效应。
压电式传感器压电分析
编辑
语音
石英的晶体结构为六方晶体系,化学式为SiO2。定义:x:两平行柱面内夹角等分线,垂直此轴压电效应最强,称为电轴。y :垂直于平行柱面,在电场作用下变形最大,称为机械轴。z :无压电效应,中心轴,也称光轴。
当在电轴方向施加作用力时, 在与电轴 x 垂直的平面上将产生电荷, 其大小为Qx=d11 Fx。式中: d11——x方向受力的压电系数Fx——作用力若在同一切片上, 沿机械轴y方向施加作用力Fy, 则仍在与x轴垂直的平面上产生电荷qy, 其大小为Qy=d12Fy a/b式中: d12——y轴方向受力的压电系数d12=-d11a、 b——晶体切片长度和厚度(1)当石英晶体未受外力作用时, 正、负离子正好分布在正六边形的顶角上, 形成三个互成120°夹角的电偶极矩P1、 P2、P3, P1+P2+P3=0, 所以晶体表面不产生电荷, 即呈中性。(2)当石英晶体受到沿x轴方向的压力作用时, 晶体沿x方向将产生压缩变形,正负电荷重心不再重合,在x轴的正方向出现正电荷, 电偶极矩在y方向上的分量仍为零, 不出现电荷。(3)当晶体受到沿y轴方向的压力作用时,在x轴上出现电荷, 它的极性为x轴正向为负电荷。在y轴方向上不出现电荷。(4)如果沿z轴方向施加作用力, 因为晶体在x方向和y方向所产生的形变完全相同, 所以正负电荷重心保持重合, 电偶极矩矢量和等于零。这表明沿z轴方向施加作用力, 晶体不会产生压电效应。
压电式传感器压电陶瓷
编辑
语音
压电晶体与压电陶瓷的比较:相同点:都是具有压电效应的压电材料。不同点:石英的优点是它的介电和压电常数的温度稳定性好,适合做工作温度范围很宽的传感器。极化后的压电陶瓷,当受外力变形后,由于电极矩的重新定位而产生电荷,压电陶瓷的压电系数是石英的几十倍甚至几百倍,但稳定性不如石英好,居里点也低。
[2]
压电式传感器等效电路
编辑
语音
1、电容效应等效原理1)压电式传感器结构..在压电晶片的两个工作面上进行金属蒸镀,形成金属膜,构成两个电极, 如图所示。2)等效电容量当压电传感器受到沿其敏感轴向的外力作用时,就在两电极上产生极性相反的电荷,因此它相当于一个电荷源(静电发生器)。由于压电晶体是绝缘体,当它的两极表面聚集电荷时,它又相当于一个电容器,其电容量为沿 x 轴方向加力产生纵向压电效应,沿 y 轴加力产生横向压电效应,沿相对两平面加力产生切向压 电效应。3)等效电压当压电晶体受外力作用时,两表面产生等量的正、负电荷 Q ,可求出其开路电压(负载电阻为无穷大时)..1)、压电式传感器既可等效为电荷源又可等效为电容器,其等效电路可认为是二者的并联,如下图(a)所示;也可认为是一个电压源和一个电容器串联,如下图(b)所示。其中 Ra为压电元件的漏电阻.2)、压电式传感器测试系统等效电路..压电式传感器工作时,需与二次仪表配套使用,此时的等效电路如下图所示。图中Cc为传感器电缆电容,Ri为放大器输入电阻,Ci为输入电容。
压电式传感器串并联
编辑
语音
单片压电晶片难以产生足够的表面电荷,在压电式传感器中常采用两片或两片以上压电晶片组合在一起使用。由于压电晶体是有极性的,因而两片压电晶体构成的传感器有两种接法:串联和并联 .
压电式传感器应用
编辑
语音
压电式测力传感器
压电式测力传感器是利用压电元件直接实现力-电转换的传感器,在拉、压场合,通常较多采用双片或多片石英晶体作为压电元件。其刚度大,测量范围宽,线性及稳定性高,动态特性好。当采用大时间常数的电荷放大器时,可测量准静态力。按测力状态分,有单向、双向和三向传感器,它们在结构上基本一样。图所示为压电式单向测力传感器的结构图。传感器用于机床动态切削力的测量。绝缘套用来绝缘和定位。基座内外底面对其中心线的垂直度、上盖及晶片、电极的上下底面的平行度与表面光洁度都有极严格的要求,否则会使横向灵敏度增加或使片子因应力集中而过早破碎。为提高绝缘阻抗,传感器装配前要经过多次净化(包括超声波清洗),然后在超净工作环境下进行装配,加盖之后用电子束封焊。压电式压力传感器的结构类型很多,但它们的基本原理与结构仍与压电式加速度和力传感器大同小异。突出的不同点是,它必须通过弹性膜、盒等,把压力收集、转换成力,再传递给压电元件。为保证静态特性及其稳定性,通常多采用石英晶体作为压电元件。压电式加速度传感器
图所示为压缩式压电加速度传感器的结构原理图,压电元件一般由两片压电片组成。在压电片的两个表面上镀银层,并在银层上焊接输出引线,或在两个压电片之间夹一片金属,引线就焊接在金属片上,输出端的另一根引线直接与传感器基座相连。在压电片上放置一个比重较大的质量块,然后用一硬弹簧或螺栓、螺帽对质量块预加载荷。整个组件装在一个厚基座的金属壳体中,为了隔离试件的任何应变传递到压电元件上去,避免产生假信号输出,所以一般要加厚基座或选用刚度较大的材料来制造。测量时,将传感器基座与试件刚性固定在一起。当传感器感受到振动时,由于弹簧的刚度相当大,而质量块的质量相对较小,可以认为质量块的惯性很小,因此质量块感受到与传感器基座相同的振动,并受到与加速度方向相反的惯性力作用。这样,质量块就有一正比于加速度的交变力作用在压电片上。由于压电片具有压电效应,因此在它的两个表面上就产生了交变电荷(电压),当振动频率远低于传感器固有频率时,传感器的输出电荷(电压)与作用力成正比,即与试件的加速度成正比。输出电量由传感器输出端引出,输入到前置放大器后就可以用普通的测量器测出试件的加速度,如在放大器中加进适当的积分电路,就可以测出试件的振动加速度或位移。压电式金属加工切削力测量主要用于金属加工切削力测量。
压电式玻璃破碎报警器主要用于璃破碎报警器。
词条图册
更多图册
解读词条背后的知识
LearningYard学苑
分享兴趣,传播快乐,增长见闻,留下美好!
压电式传感器
一.压电效应与压电逆效应压电效应:某些物质,当沿着一定方向对其加力而使其变形时,在一定表面上将产生电荷,当外力去掉后,又重新回到不带电状态的现象。压电逆效应:在物质的极化方向施加电场,这些物质就在一定方向上产生机械变形或机械应力,当外电场撤去时,这些变形或应力消失的现象。二...
2021-04-100
云汉芯城ICkey
云汉芯城(上海)互联网科技股份有限公司
压电式传感器工作原理和应用
压电式传感器工作原理压电式传感器工作原理主要基于压电效应,利用电气元件和其他机械把待测的压力转换成为电量,再进行相关测量工作的测量精密仪器,比如很多压力变送器和压力传感器。压电传感器不可以应用在静态的测量当中,原因是受到外力作用后的电荷,当回路有无限大的输入抗阻的时候,才可...
2020-07-100
云汉芯城ICkey
云汉芯城(上海)互联网科技股份有限公司
压电式传感器基础知识解析
压电式传感器是基于压电效应的传感器。是一种自发电式和机电转换式传感器。它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。压电式传感器用于测量力和能变换为电的非电物理量。它的优点是频带宽、灵敏度...
2019-07-180
参考资料
1.

传感器最新新闻资讯
.OFweek传感器网[引用日期2016-07-04]
2.

陈杰.传感器与检测技术:高等教育出版社,2002.8:70
压电式传感器:压电传感器的信号调节  第3张

压电式传感器:百度资讯搜索

美研所|远离尘嚣

热议生活圈
9月24日
作为戴森迄今功能最强劲、最智能化的轻量吸尘器,V12还突破性融入激光探测技术、压电式传感器、可视化灰尘数据等前沿科技元素,打造全新智能吸尘系统,发现并解决微尘威胁,全面提升了产品性能和用户体验。激光除尘,微尘无所遁形 搭载于全新 ...百度快照

一文了解基于直立石墨烯的传感器

腾讯网
5天前
传统的石墨烯基应变和压力传感器的传导方式包括电阻式、电容式和压电式。电阻式传感器将外力转化为电阻的变化,通过电信号的改变,可以直接被预埋的检测电路检测到。它通过电阻的变化获得电阻传感信号,电阻效应是石墨烯的特性。 百度快照

重磅!武汉大学1052页PPT带你全面了解传感器技术(史上最全!)

腾讯网
8月29日
4.3.01电涡流传感器-基本原理Part1 4.3.02电涡流传感器-基本原理Part2 4.3.03电涡流传感器-低频透射式、测量电路 4.3.04电涡流传感器应用 4.3.05电感式传感器应用举例 第5章电压电式传感器 百度快照

科技加持,提升夏日宅家安全

上游新闻
6月3日
戴森一直以解决易被他人忽视的问题为产品研发的导向,突破性地将激光探测和压电式传感器等技术应用于吸尘器领域,实现了灰尘探测、传感精析、分类统计一步到位,带来科学数据佐证的深度清洁。V15 Detect无绳吸尘器配备的激光纤巧软绒吸头采用...百度快照

戴森最新吸尘器竟用上了无人车和宇宙飞船黑科技

量子位
4月8日
压电式传感器。NASA检测太空碎片的同款技术,主要原理是将杂质撞击传感器产生的声波,转化为电信号,通过算法可以对电信号进行分析。我们日常生活中的耳机,就是“反其道行之”实现的。……然而,现在最新的吸尘器产品,统统将他们集成了。...百度快照

真的会令人爱上清洁吗?

IT时报
4月19日
亮点:首次运用压电式传感器 推荐人士:有娃家庭 使用戴森V11的一年以来,《IT时报》评测员用它来给床褥除螨,每次吸完看到尘筒里满满的纤维和皮屑混合物,就很有成就感。V12智能更进一步,可以分析吸到尘筒里的灰尘种类和数量,实时...百度快照

戴森的创新哲学:没有一蹴而就的黑科技

中关村在线
4月8日
戴森通过声学压电式传感器以每秒次的监测能力对吸入微尘进行精确分析统计,让用户通过显示屏上4根不同颜色的条柱就能看到该区域吸入灰尘的具体数量,让用户能根据清洁环境的脏污程度更精准的选择清洁方式,在清洁更脏的区域时,能够配合...百度快照

振动传感器的分类方式和依据

OFweek晓磊
4月7日
因此利用晶体的压电效应,可以制成测力传感器,在振动测量中,由于压电晶体所受的力是惯性质量块的牵连惯性力,所产生的电荷数与加速度大小成正比,所以压电式传感器是加速度传感器。7、压电式力传感器 在振动试验中,除了测量振动,还...百度快照

戴森V12 detect slim体验:激光扫描让灰尘无处遁形

PChome电脑之家
4月4日
压电式传感器作为此前太空项目用于检测太空碎片避免碰撞的高精度传感器,在戴森V12上首次应用到吸尘器产品上。相较于此前通过红外传感器来感应颗粒物的方式,压电式传感器可以实现次/秒的颗粒物检测。根据戴森独创的算法技术,当灰尘进入...百度快照

戴森V12 Detect Slim 动手玩:激光探测让灰尘无所遁形

DoNews
4月2日
戴森 V12 Detect Slim 内置声学压电式传感器,可以对灰尘进行测量,结合戴森独特算法,在尾端的 LCD 屏幕上实时分类显示吸入灰尘的大小和数量。每个彩色条柱对应的是不同尺寸的灰尘颗粒计数,将灰尘按一定尺寸范围分类,小到 10 微米,大...百度快照

您可能感兴趣的文章

本文地址:https://www.ceomba.cn/1815.html
文章标签: ,   ,  
版权声明:本文为原创文章,版权归 ceomba 所有,欢迎分享本文,转载请保留出处!

文件下载

老薛主机终身7折优惠码boke112

上一篇:
下一篇:

评论已关闭!